Linear inverse problems with discrete data. I. General formulation and singular system analysis
نویسندگان
چکیده
منابع مشابه
Ill-Posed and Linear Inverse Problems
In this paper ill-posed linear inverse problems that arises in many applications is considered. The instability of special kind of these problems and it's relation to the kernel, is described. For finding a stable solution to these problems we need some kind of regularization that is presented. The results have been applied for a singular equation.
متن کاملDetecting the location of the boundary layers in singular perturbation problems with general linear non-local boundary conditions
Singular perturbation problems have been studied by many mathematicians. Since the approximate solutions of these problems are as the sum of internal solution (boundary layer area) and external ones, the formation or non-formation of boundary layers should be specified. This paper, investigates this issue for a singular perturbation problem including a first order differential equation with gen...
متن کاملSingular Regularization of Inverse Problems
This thesis comments on the use of Bregman distances in the context of singular regularization schemes for inverse problems. According to previous works the use of Bregman distances in combination with variational frameworks, based on singular regularization energies, leads to improved approximations of inverse problems solutions. The Bregman distance has become a powerful tool for the analysis...
متن کاملOn a Non-homogeneous Singular Linear Discrete Time System with a Singular Matrix Pencil
In this article, we study the initial value problem of a non-homogeneous singular linear discrete time system whose coefficients are either non-square constant matrices or square with an identically zero matrix pencil. By taking into consideration that the relevant pencil is singular, we provide necessary and sufficient conditions for existence and uniqueness of solutions. More analytically we ...
متن کاملNonconvex Variational Problems with General Singular Perturbations
We study the effect of a general singular perturbation on a nonconvex variational problem with infinitely many solutions. Using a scaling argument and the theory of T-convergence of nonlinear functionals, we show that if the solutions of the perturbed problem converge in L1 as the perturbation parameter goes to zero, then the limit function satisfies a classical minimal surface problem. Introdu...
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
ژورنال
عنوان ژورنال: Inverse Problems
سال: 1985
ISSN: 0266-5611
DOI: 10.1088/0266-5611/1/4/004